В книге изложен ряд основных идей и методов, применяемых для исследования обыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрий, диаграммы Ньютона и т.д.).
Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры.
Рассматриваются вопросы качественной теории дифференциальных уравнений (структурная устойчивость, У-системы), асимптотических методов (усреднение, адиабатические инварианты), аналитических методов локальной теории в окрестности особой точки или периодического решения (нормальные формы Пуанкаре), а также теории бифуркаций фазовых портретов при изменении параметров.
Книга рассчитана на широкие круги математиков – от студентов, знакомых лишь с простейшими понятиями анализа и алгебры, до преподавателей, научных работников и всех читателей, применяющих дифференциальные уравнения в физике и естественных науках.
Вес: |
491 |
Ширина упаковки: |
150 |
Высота упаковки: |
15 |
Глубина упаковки: |
226 |
crossborder: |
false |
Серия: |
Классические направления в математике |
Издательство: |
МЦНМО |
Тираж: |
2000 |
Мелованная бумага: |
false |
Цветные иллюстрации: |
false |
Размер упаковки (Длина х Ширина х Высота), см: |
22 x 15 x 2 |
Название: |
Геометрические методы в теории обыкновенных дифференциальных уравнений |
Комментарий: |
4-е издание. |
Тип издания: |
Отдельное издание |
Признак 18+: |
false |
Основной жанр книги: |
Научная литература |
Направления нехудожественной литературы: |
Математические науки |
Тип книги: |
Печатная книга |
Тип обложки: |
Твердый переплет |
Тип носителя: |
Печатная книга |
Эпоха публикации: |
Современные издания |
ebsmstock: |
false |