Цель этих лекций - представить быстрое и содержательное изложение ключевых аспектов теории гауссовских процессов, которые читателю необходимо понять и освоить для творческого овладения материалов. В первых главах рассматриваются основные понятия классической теории гауссовских процессов и мер. Ключевыми понятиями здесь являются ядро меры, интегральное представление процесса, изопериметрическое неравенство, принцип больших уклонений. Далее в лекциях отражён прогресс, достигнутый за последнее десятилетие и ещё недостаточно освещенный в литературе. Сюда можно отнести оценки вероятностей малых уклонений, разложения гауссовских векторов и задачи их бесконечномерного квантования. Книга предназначена для студентов и аспирантов, обучающихся по направлениям "Математика" и "Прикладная математика", специализирующихся в области теории вероятностей, математической статистики, функционального анализа.