В монографии изложены основы метода фиктивных областей при приближенном решении задач математической физики в сложных областях. Он основан на переходе к задаче в регулярной области, целиком содержащей исходную. Рассмотрены вопросы обоснования такого подхода на дифференциальном уровне при исследовании краевых задач для эллиптических и параболических уравнений, задач на собственные значения. Строятся модификации хорошо известных итерационных методов для решения сеточных задач, возникающих при использовании метода фиктивных областей. Возможности метода фиктивных областей иллюстрируются на примерах решения задач идеальной и вязкой несжимаемой жидкости, фильтрации под гидротехническим сооружением.
Для специалистов по прикладному математическому моделированию, студентов старших курсов.
Вес: |
290 |
Ширина упаковки: |
155 |
Высота упаковки: |
12 |
Глубина упаковки: |
230 |
crossborder: |
false |
Издательство: |
Ленанд |
Мелованная бумага: |
false |
Цветные иллюстрации: |
false |
Размер упаковки (Длина х Ширина х Высота), см: |
22 x 15 x 1 |
Название: |
Метод фиктивных областей в задачах математической физики |
Комментарий: |
2-е издание. |
Сложность описания: |
1_Простая |
Тип издания: |
Отдельное издание |
Признак 18+: |
false |
Основной жанр книги: |
Научная литература |
Направления нехудожественной литературы: |
Физические науки. Астрономия |
Тип книги: |
Печатная книга |
Тип обложки: |
Твердый переплет |
Тип носителя: |
Печатная книга |
Эпоха публикации: |
Современные издания |
ebsmstock: |
false |