Известно, что точные аналитические решения рассматриваемых в книге уравнений в настоящее время получены лишь для задач в упрощенной математической постановке, когда не учитываются многие важные характеристики процессов. Все это приводит к существенному отклонению математических моделей от реальных физических процессов, протекающих в конкретных энергетических установках. В связи с этим большой интерес представляют методы прикладной математики, позволяющие получать решения с точностью, достаточной для инженерных приложений.
Авторы настоящей книги под руководством Заслуженного деятеля науки РФ, доктора физико-математических наук, профессора Э.М.Карташова исследуют инженерные методы построения решений задач стационарной и нестационарной теплопроводности, позволяющие получать эффективные аналитические решения для однослойных и составных конструкций. При определении собственных чисел вводятся дополнительные граничные условия, получаемые из дифференциального уравнения краевой задачи Штурма-Лиувилля путем его дифференцирования в граничных точках. С помощью интегрального метода теплового баланса на основе определения фронта температурного возмущения и дополнительных граничных условий получены аналитические решения задач теплопроводности с переменными начальными условиями, с переменными во времени граничными условиями и внутренними источниками теплоты, нелинейных задач теплопроводности. С использованием теории обобщенных функций рассмотрены методы получения решений краевых задач теплопроводности для многослойных конструкций.
В книге представлены результаты получения и анализа точных аналитических решений гиперболических уравнений, описывающих распространение тепловой и гидравлической волны с конечной скоростью, колебательные процессы в твердых телах и упругих жидкостях, включая гидравлический улар. Приведены решения динамических задач термоупругости.
Материал издания отражает передовое состояние научной мысли в исследуемой области, он представляет несомненный интерес для научно-технических работников, специализирующихся в области математики и теплофизики, а также для преподавателей и студентов технических вузов.
Вес: |
335 |
Ширина упаковки: |
140 |
Высота упаковки: |
20 |
Глубина упаковки: |
220 |
crossborder: |
false |
Издательство: |
Ленанд |
Мелованная бумага: |
false |
Цветные иллюстрации: |
false |
Размер упаковки (Длина х Ширина х Высота), см: |
21.5 x 14.7 x 1.7 |
Название: |
Методы решения параболических и гиперболических уравнений переноса тепла, массы, импульса |
Сложность описания: |
1_Простая |
Тип издания: |
Отдельное издание |
Признак 18+: |
false |
Основной жанр книги: |
Научная литература |
Направления нехудожественной литературы: |
Физические науки. Астрономия |
Тип книги: |
Печатная книга |
Тип обложки: |
Мягкая обложка |
Тип носителя: |
Печатная книга |
Эпоха публикации: |
Современные издания |
ebsmstock: |
false |