В учебном пособии рассмотрены методы построения разностных схем для дифференциальных уравнений; интерполяция сеточных функций; методы решения стационарных и нестационарных задач математической физики; методы Шварца и разделения области; методы возмущений; методы оптимизации; повышение точности приближенных решений. Рассмотрены многие современные подходы к численным методам. Учебное пособие предназначено для студентов старших курсов и аспирантов по специальности "Прикладная математика", также может быть полезно для научных работников в области вычислительной математики.