Изложены понятия корректных и некорректных задач, а также задач, промежуточных между корректными и некорректными. Приведены примеры подобных математических задач: системы линейных алгебраических уравнений, системы обыкновенных дифференциальных уравнений, дифференциальные уравнения в частных производных, интегральные уравнения, а также примеры прикладных задач из теории управления, обработки изображений и томографии. Показано, что преобразования уравнений, эквивалентные в классическом смысле, могут переводить корректное уравнение в некорректное и наоборот. Введено понятие преобразовании, эквивалентных в расширенном смысле. Изложены устойчивые методы регуляризации Тихонова и решения на компакте. Приведены результаты решения численных примеров. Данная книга может рассматриваться как учебное пособие (повышенной трудности), так и монография. Для студентов, магистров, аспирантов, преподавателей и научных сотрудников в области фундаментальной и прикладной математики.